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a b s t r a c t

This paper presents a two-dimensional Neighborhood Preserving Projection (2DNPP) for appearance-

based face representation and recognition. 2DNPP enables us to directly use a feature input of 2D image

matrices rather than 1D vectors. We use the same neighborhood weighting procedure that is involved

in NPP to form the nearest neighbor affinity graph. Theoretical analysis of the connection between

2DNPP and other 2D methods is presented as well. We conduct extensive experimental verifications to

evaluate the performance of 2DNPP on three face image datasets, i.e. ORL, UMIST, and AR face datasets.

The results corroborate that 2DNPP outperforms the standard NPP approach across all experiments

with respect to recognition rate and training time. 2DNPP delivers consistently promising results

compared with other competing methods such as 2DLPP, 2DLDA, 2DPCA, ONPP, OLPP, LPP, LDA,

and PCA.

Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The last decade has witnessed growing interest in dimension-
ality reduction techniques for face recognition, in particular at
the appearance-based aspect. Dimensionality reduction aims at
mapping high-dimensional data to a lower dimensional space
while preserving the intrinsic geometry of data samples by
eliminating noises. In classification, as an application example,
low-dimensional space usually advocates superior performance
when low-dimensional data are used as inputs of a classifier.
Amidst the rising popularity of dimensionality reduction techniques,
appearance-based face recognition has made a huge progress.
Widely used techniques include the following: Eigenfaces [1], a
method employing Principal Component Analysis (PCA) on face
images; Fisherfaces [2], a method employing Linear Discriminative
Analysis (LDA) on face images; Laplacianfaces [3], a method employ-
ing Locality Preserving Projection (LPP) for face representation;
Neighborhood Preserving Projection (NPP) [4] methods for face
analysis and recognition.

PCA [1,5] is a well-known linear technique, which involves
finding a set of mutually orthogonal basis functions and using the
leading eigenvectors of the sample covariance matrix to char-
acterize the lower dimensional space. Although PCA guarantees
the ability to preserve the global structure, the locality of data
011 Published by Elsevier Ltd. All

.

samples is overlooked. This may lead to losing important infor-
mation of the local geometry of each neighborhood. To incorpo-
rate discriminative information between classes into eigenspace,
LDA [6], a supervised method for feature extraction and dimen-
sionality reduction, has been widely used in many applications
such as face recognition [2,7–10] and image retrieval [11]. But its
projection is still based on the global structure of data samples.
These observations have motivated the research in local methods
(i.e. nonlinear manifold learning techniques) such as Isometirc
Feature Mapping (Isomap) [12], Laplacian Eigenmap [13], and
Locally Linear Embedding (LLE) [14]. But these techniques may
yield Out of Sample problem, which can be described by the
unclearness of how to evaluate the maps on new testing data. To
overcome this shortcoming, corresponding projection algorithms
are proposed. Deng et al. [15] developed an Isometric Projection
algorithm by providing a functional mapping between the high
and low dimensional spaces that are valid both on and off the
training data. He et al. [3,16] designed an LPP algorithm and
applied it to face recognition. This algorithm firstly constructs a
weighted k-nearest neighbor (k-NN) graph to model the data
topology. Then the projection in LPP is implemented by minimiz-
ing a certain objective function, which relates to a Laplacian
matrix. The minimization leads to finding the transformation
vector, which can be accomplished by solving a generalized
eigenvalue problem. Gaussian weights are used in LPP attempting
to amplify the neighborhood structure and to preserve it in the
reduced space. But this strategy is somehow parameter sensitive,
because the determination of weights requires the selection of an
rights reserved.
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appropriate value of the width of the Gaussian envelope [4].
Recently, Kokiopoulou and Saad [4] introduced several graph-
based methods for dimensionality reduction. In particular, they
proposed two algorithms, i.e. Orthogonal NPP (ONPP) and NPP,
which are derived under the frame of LLE. These approaches use
data-driven weights, which are found by solving a least-squares
problem to reflect the intrinsic geometry of the local neighbor-
hoods. The linear embedding in LLE is performed over the
minimum of the reconstruction errors. This minimization pro-
blem leads to finding the d smallest eigenvalues (d is the
dimension of the reduced space) and associated eigenvectors.
The only difference between NPP and ONPP is that NPP imposes a
condition of orthogonality on the projected data such that it
needs to solve a generalized eigenvalue problem, while ONPP
enforces the mapping to be orthogonal and solves an ordinary
eigenvalue problem.

However, using the above-mentioned graph-based methods
for face recognition usually involves a feature input of
one-dimensional (1D) stacked vectors of face image matrices.
Besides more computational time is required for training, this
transformation from image matrix to stacked vector may have an
impact on the evaluation of the covariance matrix such that the
recognition rate is degraded. In view of these, Yang et al. [17]
proposed a two-dimensional (2D) PCA algorithm, which directly
uses image matrix as feature input. 2DPCA achieves promising
results compared with the traditional PCA in terms of face
recognition rate and training time. Motivated by 2DPCA, Li and
Yuan [18] and Chen et al. [19] designed 2DLDA and 2DLPP
algorithms, respectively. These two 2D extensions demonstrate
promising properties compared with their 1D ones. In summary,
we can say that these 2D methods have three advantages over 1D
methods. First, the recognition rate is significantly improved since
they accurately calculate the covariance matrix and somehow
keep the relationships among sub-patterns in the reduced space.
Second, they have effectively conquered the Undersampled Size

Problem, which indicates that the number of samples is less than
their dimension. Consequently, 2D approaches do not need any
preprocessing procedures, whilst 1D methods usually use PCA to
obtain initial projected space. Third, much less training time is
required as 2D methods are based on direct matrix calculation
that do not need initial PCA preprocess. In this paper, we design a
2DNPP algorithm, which is an extension of NPP, but it fully
delivers the above-mentioned advantages of 2D methods.
Likewise, it demonstrates superior property over other 2D methods
such as 2DPCA [17], 2DLDA [18,30,31], and 2DLPP [19]. Concre-
tely, 2DNPP has another two advantages. First, 2DNPP can be
implemented in either an unsupervised or a supervised way,
whilst 2DPCA [17] is only used in unsupervised cases and 2DLDA
[18] is only conducted in supervised manner when the class labels
are available. Second, 2DNPP does not require any parameter
selection during the neighborhood weighting, whilst 2DLPP [19]
is sensitive to the selection of the width of a Gaussian envel-
ope [4]. To evaluate the performance of 2DNPP, this study has
included extensive experimental verifications on different face
datasets, i.e. ORL, UMIST, and AR datasets. The results show that
2DNPP achieves superior recognition rate compared with 2DPCA
[17], 2DLPP [19] and 1D methods such as PCA [5], LDA [2], LPP [3],
NPP [4], and ONPP [4]. Our proposed 2DNPP delivers comparable
results compared with 2DLDA [18].

It is worthwhile to highlight the contributions of this research
here: (1) we propose a 2DNPP algorithm, which is directly derived
from the standard NPP algorithm; (2) we conduct detailed
comparisons between 2DNPP and other competing algorithms,
in particular the comparisons to other 2D techniques (i.e. 2DLPP,
2DLDA, and 2DPCA). As such, we are able to provide performance
evaluations of these methods for other researchers; (3) in line
with the essence of 2DNPP and 2DLPP, we also extend the ONPP
and OLPP algorithms (we call the extensions, 2DONPP and
2DOLPP, respectively), and we evaluate them under our experi-
mental framework. Interesting results have been shown that,
unlike ONPP and OLPP, both 2DONPP and 2DOLPP failed in face
recognition with very large error rate. This finding shows a big
necessity of the constraint to the objective function F(Y) in the
form of YYT

¼ Id (see Section 4.1) when it comes to dealing with
two-dimensional (2D) feature inputs.

The remaining sections of this paper are organized as follows.
A detailed description of 2DNPP algorithm in an unsupervised
setting is presented in Section 2. In Section 3, we introduce a
supervised version of 2DNPP algorithm. In Section 4, we conduct a
detailed theoretical analysis of the connection between 2DNPP
and other 2D methods. In Section 5, we summarize the face
recognition procedures. In Section 6, we evaluate the performance
of 2DNPP with respect to recognition rate and training time over
three popular face datasets. Section 7 ends the paper with
conclusion and future work propositions.
2. 2DNPP

In this section, we develop a 2DNPP algorithm to learn such a
transformation matrix V that the locality property of the set X is
preserved. 2DNPP is a two-dimensional extension of NPP [4],
which is designed under the framework of LLE [14]. According to
[14], given a well-sampled manifold, we expect each data point
and its k nearest neighbors (k-NNs) to lie on or close to a locally
linear patch of the manifold. Thus, we characterize the local
geometry of these patches by linear coefficients that reconstruct
each data point from its neighbors. In the following we introduce
a method to learn the linear coefficients such that the reconstruc-
tion errors are minimized.
2.1. Problem statement

Given a set of N training face images {xi} (xiARm�n,i¼1,
2, y, N), the goal of 2D dimensionality reduction is to design a
linear transformation matrix V (VARm� d, where dom) such that
the set {xi} is projected to a lower dimensional space {yi}, where
yiARd�n. Let X¼[x1, x2, y, xN] denote the image set {xi}, and
Y¼[y1, y2, y, yN] denote the projection set {yi}, respectively. The
linear transformation is given by

Y ¼ VT X: ð1Þ

Likewise, each image matrix xi can be replaced by yi¼VTxi

directly. The projection Y is an accurate representation of the
original data X, because the noises spread in the original space are
eliminated and the desirable properties are preserved. Typical
examples of desirable properties, which are similar to the case
tackled by 1D methods [4], include the global geometry or locality
information.
2.2. Neighborhood weighting

Consider an affinity matrix W¼[wij]ARN�N, in which each
component of wij represents the optimal weight between the
data point xi and its neighbor xj. According to the basic assump-
tion that each data point and its k-NNs lie on a locally linear
manifold, we can reconstruct each data point xi with a linear
combination of its k-NNs [4,14]. The reconstruction errors are
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measured by minimizing the following cost function:

dðWÞ ¼
X

i

:xi�
X

j

wijxj:
2

2, ð2Þ

where the weights wij are subject to the constraints as follows:
(1)
 wij¼0, if xj is not one of the k-NNs of xi.

(2)
 wii�0 for all i.P

(3)
 jwij¼1.
In addition, :U:2 is the Frobenius norm. The objective of the
function is to find the optimal weights wij, which satisfy the above
constraints. As a result, the reconstruction errors d(W) are mini-
mized. Let siARmn�1 denote the stacked vector of xi by column. It
is easy to see that the format of the reconstruction errors
illustrated in Eq. (2) is equivalent to the following representation:

dðWÞ ¼
X

i

:si�
X

j

wijsj:
2

2: ð3Þ

Thus, the determination of the weights wij for 2DNPP is exactly
the same with that conducted in NPP [4]. For completeness, we
briefly summarize the process here. More details can be referred
to [4,20].

Let GARk� k denote the local Grammian matrix associated with
the stacked vector si of data point xi. The components of G is
defined by

guv ¼ ðsi�suÞ
T
ðsi�svÞ: ð4Þ

Let S(i) be a system of stacked vectors with respect to xi and its
neighbors, and to find the optimal weights wi,:, we need to solve
the least squares ðSðiÞ�sie

T Þwi,: ¼ 0 subject to the constraint
eTwi,:¼1, where e¼[1, y, 1]T is the vector of all ones. The solution
of this constrained least squares problem is given by the follow-
ing, which involves the inverse of G [4,14,20]:

wi,: ¼
G�1e

eT G�1e
: ð5Þ

This is an explicit expression for the calculation of the weights.
As pointed out in [4], determining the weights wi,j for a given data
point xi is a local calculation, because it only involves xi and its
neighbors. Any algorithm for this computation will be fairly
inexpensive. It is noted that the Grammian matrix G may be a
singular matrix. In practice, we can set G

0

¼GþsIk to replace G as
the Grammian matrix. Here, s is a small number (usually set to
10�4), and Ik is the identify matrix of order k. This setting is
similar to that in [20].
2.3. Projection learning

Given that each image matrix xiARm�n is projected to a matrix
with lower size yiARd�n, dom. Similar to LLE [14] and NPP [4],
we use the same weights, which are used for reconstructing the
data point xi by its neighbors in the original space, to reconstruct
its projection yi in the lower dimensional space by its correspond-
ing neighbors. The determination of yi is given by minimizing the
following cost function [14]:

FðYÞ ¼
X

i

:yi�
X

j

wijyj:
2

2: ð6Þ

Since the weights W¼[wij]ARN�N are fixed, the goal of Eq. (6)
is to minimize the objective F(Y) associated with Y¼[y1, y2,
y, yN]ARd�nN.
Note that we can rewrite the objective F(Y) in the following by
employing some simple algebraic steps:X

i

:yi�
X

j

wijyj:
2

2 ¼ :Y�YðW � InÞ
T:2

2 ¼ :YðI � In�WT
� InÞ:

2

2

¼ trfY ½ðI�WT
Þ � In�½ðI�WÞ � In�Y

T
g ¼ trfY½ðI�WT

ÞðI�WÞ � In�Y
T
g

¼ trfVT X½ðI�WT
ÞðI�WÞ � In�X

T Vg, ð7Þ

where operator � is the Kronecker product of the matrices, In is
the identity matrix of order n, and I is the identity matrix of order
N. Here, we impose a constraint to the objective F(Y) by YYT

¼ Id,
where Id is the identity matrix of order d. The goal of imposing
this constraint is to produce an orthogonal projection set Y. Thus,
we have the complete format of the constraint as follows:

VT XXT V ¼ Id: ð8Þ

Finally, the minimization problem is summarized as

argmin
V

trfVT X½ðI�WT
ÞðI�WÞ � In�X

T Vg

subject toVT XXT V ¼ Id: ð9Þ

It is worth noting that the matrices: X½ðI�WT
ÞðI�WÞ � In�X

T

and XXT
¼ XIXT are both symmetric and positive semidefinite

since the matrix [(I�WT)(I�W)�In] and the identity matrix I are
both symmetric and positive semidefinite. Thus, similar to LPP [3],
the above minimization problem leads to solving the following
generalized eigenvalue problem, which is derived from spectral
graph theory [13,21]:

X½ðI�WT
ÞðI�WÞ � In�X

T V ¼ lXXT V , ð10Þ

where l is the eigenvalue solution to the problem. The solution V to
the optimization problem is the basis of the eigenvectors associated
with the d smallest eigenvalues for the generalized eigenvalue
problem as shown in Eq. (10).
3. Supervised 2DNPP

In the last section, we described an unsupervised version of
2DNPP algorithm without considering label information of train-
ing faces. It may require prior knowledge to select the value of k,
which is the number of NNs associated with each training sample
xi. Similar to the supervised NPP [4] algorithm, it is easy to extend
2DNPP to a supervised setting when the labels of training faces
are available. In a supervised setting, the NNs of a data sample xi

is only considered if they belong to the same class with xi. By this
simple setting, we incorporate the discriminative information
into the neighborhood weighting of 2DNPP. Thus, 2DNPP is able
to deliver not only intrinsic geometry information but also
discriminative information, which enables us to further improve
the recognition performance.

3In a supervised setting, let c denote the number of classes
with respect to training samples, and let Ni be the number of data
points that belong to the ith class. Recall that N represents the

total number of training samples, hence, N¼
Pc

i ¼ 1 Ni. As men-

tioned in Section 2.2, the weight matrix W involved in 2DNPP can
be achieved by following the same procedures used for NPP [4].
Therefore, the weight matrix W inherits the same property
described in NPP [4]. For instance, the rank of (I�W) is at most
(N�c). The detailed proof can be found in [4]. Consequently, the

matrix
_
M ¼ XðI�WT

ÞðI�WÞXT will have rank at most (N�c). This
will directly lead to the Undersampled Size Problem. In order to

avoid the singularity of the matrix
_
M , an initial PCA [5] projection

is usually employed such that the dimensionality of the data
vectors is reduced to (N�c) [4]. For the case of 2DNPP, we can
easily conclude that the rank of (I�W)�In is at most n(N�c).



Table 1
Problems involved in different methods.

Method Minimized objective function Constraint Eigenvalue

problem
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However, the resulting matrix ~M ¼ X½ðI�WT
ÞðI�WÞ � In�X

T ARm�m

will not be singular anymore, because usually m5nðN�cÞ in
practice. Thus, 2DNPP does not require the PCA preprocessing.
In this sense, it saves significant training time compared with the
standard NPP [4].
2DNPP trfVT X½ðI�WT
ÞðI�WÞ � In�X

T Vg VT XXT V ¼ Id
Generalized

NPP trfVT X½ðI�WT
ÞðI�WÞ�XT Vg VT XXT V ¼ Id

Generalized

2DONPP trfVT X½ðI�WT
ÞðI�WÞ � In�X

T Vg – Ordinary

ONPP trfVT X½ðI�WT
ÞðI�WÞ�XT Vg – Ordinary

2DLPP trfVT X½ðD�SÞ � In�X
T Vg VT XðD� InÞX

T V ¼ Id
Generalized

LPP trfVT XðD�SÞXT Vg VT XDXT V ¼ Id
Generalized

2DOLPP trfVT X½ðD�SÞ � In�X
T Vg – Ordinary

OLPP trfVT XðD�SÞXT Vg – Ordinary

Note: For 2D methods, feature input XARm� nN; for 1D methods, feature input

XARm�N.
4. Relationship analysis

In this section, we conduct a deep analysis of 2DNPP to build a
relationship with 2DLPP [19], 2DPCA [17], and 2DLDA [18].

4.1. Relationship to 2DLPP

Similar to 2DNPP, 2DLPP [19] seeks to preserve the locality
property of data samples in the reduced space but minimizes the
following cost function:

F2DLPP ¼
1

2

XN

i,j ¼ 1

Sij:xi�xj:
2

2, ð11Þ

where Sij denotes the weight between data samples xi and xj. The
weight matrix S, which is symmetric, can be defined by either a
radius setting of the local neighborhood or a Heat Kernel. For
details, refer to [3,19]. By following some algebraic steps, the
objective function can be represented by

F2DLPP ¼ trfVT X½ðD�SÞ � In�X
T Vg, ð12Þ

where D¼diag(di) with di ¼
PN

j ¼ 1 Sij, L¼(D�S) is the Laplacian
matrix [21]. By imposing a constraint VT XðD� InÞX

T V ¼ Id, 2DLPP
leads to the following minimization problem:

argmin
V

trfVT X½ðD�SÞ � In�X
T Vg

subject to VT XðD� InÞX
T V ¼ Id: ð13Þ

However, if we first normalize the weight matrix S by the
setting that each entry is divided by its corresponding row sum,
the diagonal matrix D will become an identity matrix I of order N,
and the Laplacian matrix L¼ ðI� ~SÞ, where ~S is the normalized
version of S. Then the minimization problem involved in 2DLPP
will become

argmin
V

trfVT X½ðI� ~SÞ � In�X
T Vg

subject to VT XXT V ¼ Id: ð14Þ

The solution V to above problem is to solve the generalized
eigenvalue problem and to find the basis of the eigenvectors
associated with the d smallest eigenvalues. By comparing with
Eq. (9), we can easily observe that the only difference between
2DLPP and 2DNPP is the matrix including the weights between
data samples. 2DNPP uses the matrix M2DNPP¼(I�WT)(I�W) to
evaluate the intrinsic geometry of local neighborhoods, whilst
2DLPP employs M2DLPP ¼ ðI� ~SÞ. Here, M2DLPP acts like a counter-
part to M2DNPP but is defined by an artificial setting to the weight
matrix. In contrast, 2DNPP assumes that each data sample, along
with its k-NNs lies on a locally linear manifold [4]. Thus, given the
value of k, the number of NNs associated with each training
sample, the implementation of the weight matrix will be straight-
forward. In addition, 2DNPP is equivalent to 2DLPP in some case,
as described by the following proposition.

Proposition 1. When we put 1/N at each entry of the weight

matrices W and S, i.e. wij¼1/N and Sij¼1/N, 2DNPP is equivalent

to 2DLPP.

Proof. If Sij¼1/N involved in 2DLPP, the diagonal matrix D

becomes an identity matrix I of order N, and the Laplacian matrix
L¼(D�S) is written as L¼(I�(1/N)eeT), where e¼[1, y, 1]T is a
column vector with the length N. On the other hand, if wij¼1/N
used in 2DNPP, the weight matrix W becomes a symmetric
matrix, and the matrix M2DNPP¼(I�WT)(I�W) can be rewritten as

M2DNPP ¼ ðI�WÞ2 ¼ I�
1

N
eeT

� �2

¼ I�
2

N
eeTþ

1

N2
eðeT eÞeT

¼ I�
2

N
eeTþ

N

N2
eeT ¼ I�

1

N
eeT , ð15Þ

which is exactly same with the Laplacian matrix L. Therefore,
when taking 1/N at each entry of the weight matrices W and S, i.e.
wij¼1/N and Sij¼1/N, 2DNPP is equivalent to 2DLPP. It is worth
noting that this proposition is also satisfied for that of NPP and
LPP in 1D case. &

As discussed above, NPP and LPP are equivalent under some
special setting. It is worth pointing out that the only difference
between NPP, LPP and their orthogonal versions (i.e. ONPP and
OLPP [4]) is that NPP and LPP impose a constraint to the objective
function F(Y) in the form of YYT

¼ Id such that they need to solve a
generalized eigenvalue problem, while ONPP and OLPP enforce
the mapping V to be orthogonal and solves an ordinary eigenvalue
problem. The imposition of this orthogonality does boost the
performance of NPP and LPP in a significant rate [4]. In line with
the essence of this in 1D case, we can easily make extensions to
ONPP and OLPP for 2D feature inputs. We call the extension
algorithm for ONPP, 2DONPP, which does not consider the con-
straint as shown in Eq. (8). Likewise, we call the extension algorithm
for OLPP, 2DOLPP, which optimizes the objective function without
taking the constraint into account as shown in Eq. (13). For clarity,
we summarize the problems involved in different methods in
Table 1. With these extensions, interesting results have been shown
in our experiments. Basically, we found that both 2DONPP and
2DOLPP failed in face recognition with very large error rates (see
Section 6).

4.2. Relationship to 2DPCA

2DPCA [17] seeks the transformation matrix V by maximizing
the covariance of the projected image matrices. Let us put 1/N at
each entry of the weight matrix W, which is used in 2DNPP, i.e.
wij¼1/N. Thus, W becomes a symmetric matrix. According to
proposition 1, the matrix M2DNPP¼(I�WT)(I�W) can be repre-
sented as M2DNPP¼ I�(1/N)eeT. We have

1

N
~M ¼

1

N
X ðI�WT

ÞðI�WÞ � In

h i
XT
¼ X

1

N
I�

1

N2
eeT

� �
� In

� �
XT

¼
XN

i ¼ 1

xi
1

N
In

� �
xT

i �
XN

i,j ¼ 1

xi
1

N2
In

� �
xT

j ¼
1

N

XN

i ¼ 1

ðxi�xÞðxi�xÞT ¼ ~M2DPCA,

ð16Þ
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where x¼
PN

i ¼ 1 xi=N is the mean of data samples, and ~M2DPCA is
just the covariance matrix of data samples. However, 2DPCA aims
at finding the eigenvectors of the matrix ~M associated with the
largest eigenvalues such that the covariance of data samples is
maximized [3,19]. In contrast, 2DNPP aims at preserving the local
geometry of data samples and chooses the basis of the matrix ~M

associated with the smallest eigenvalues. The rationale behind
this scheme is that the directions preserving the locality property
are those minimizing the local covariance rather than minimizing
the global covariance. The detailed explanation can be found
in [3].

4.3. Relationship to 2DLDA

2DLDA [18] seeks a projection that carries maximal discrimi-
native information. This projection is accomplished by solving the
following generalized eigenvalue problem:

SbV ¼ lSwV , ð17Þ

where Sb and Sw are called the within-class scatter matrix and the
between-class scatter matrix, respectively, and they are defined
as follows:

Sb ¼
Xq

k ¼ 1

Nkðx
ðkÞ
�xÞðxðkÞ�xÞT , ð18Þ

Sw ¼
Xq

k ¼ 1

XNk

j ¼ 1

ðxðkÞj �xðkÞÞðxðkÞj �xðkÞÞT , ð19Þ

where xðkÞ is the mean of data samples that belong to the kth class,
xðkÞj is the jth data sample in the kth class, Nk is the number of data
samples in the kth class, and q is the number of classes in the data
set. If we set wij¼1/Nk for the weight between data samples xðkÞi

and xðkÞj , otherwise wij¼0, Sw, and Sb can be rewritten as

Sw ¼
Xq

k ¼ 1

XNk

j ¼ 1

ðxðkÞj �xðkÞÞðxðkÞj �xðkÞÞT

¼
Xq

k ¼ 1

XNk

j ¼ 1

xðkÞj ðx
ðkÞ
j Þ

T
�
Xq

k ¼ 1

NkxðkÞðxðkÞÞT

¼
Xq

k ¼ 1

xðkÞ INk
�

1

Nk
eNk

eT
Nk

� �
� In

� �
ðxðkÞÞT

¼
Xq

k ¼ 1

xðkÞ½ðINk
�W ðkÞ

Þ
2
� In�ðx

ðkÞÞ
T

¼ X½ðI�WT
ÞðI�WÞ � In�X

T , ð20Þ

Sb ¼
Xq

k ¼ 1

Nkðx
ðkÞ
�xÞðxðkÞ�xÞT

¼
Xq

k ¼ 1

NkxðkÞðxðkÞÞT�NxðxÞT

¼ X ðI�
1

N
eeT Þ � In

� �
XT
�X ðI�WÞ2 � In

h i
XT

¼N ~M2DPCA�X½ðI�WT
ÞðI�WÞ � In�X

T : ð21Þ

Thus, it leads to the following generalized eigenvalue problem:

X ðI�WT
ÞðI�WÞ � In

h i
XT V ¼

N

1þl
~M2DPCAV : ð22Þ

Then we choose the eigenvectors associated with the smallest
eigenvalues as the optimal projection. If we set the mean of data
samples to zero, the matrix N ~M2DPCA becomes XXT. Thus, Eq. (22)
is very similar to Eq. (10) defined in Section 2.3. Note that the
above derivation of the relationship between 2DNPP and 2DLDA
is identical with that of the connection between 2DLLP and
2DLDA [19]. For more details, refer to [3,19]. Therefore, we see
that 2DNPP, 2DLPP, and 2DLDA are much related, and they can be
unified in a single framework under certain condition.
5. Face recognition

For clarity, in this section we summarize the 2DNPP algorithm
and its application procedures on face recognition.

First, we input the training samples and train a 2DNPP
algorithm. After learning the transformation matrix V, we are
able to directly map the training data to the lower dimensional
space. Likewise, given a new testing image matrix xt, it is quite
trivial to project it to the image yt located in the subspace by
simple matrix product as follows:

yt ¼ VT xt : ð23Þ

Consequently, the distance metric between two face samples
can be defined and measured onto the subspace. In this paper, the
distance metric is defined by the following [17]:

disðyi,yjÞ ¼
Xd

l ¼ 1

99yðlÞi �yðlÞj 992, ð24Þ

where yiARd�n represents the ith feature matrix, and yðlÞi AR1�n is
the lth row of yi. The smaller the distance between two feature
matrices is, the closer the two faces are. Then a classifier can be
used for face recognition phase. Here, we use NN classifier [2] to
perform recognition in low dimensional space. Other pattern
classifiers such as Support Vector Machine [22], Bayesian [23],
and neural networks [24] can also be employed.

The overall face recognition procedure is summarized as
follows:
(1)
 Input the training set X¼(x1, x2, y, xN)ARm�nN and the
dimension of reduced space d.
(2)
 Compute the k nearest neighbors of each data sample xi.

(3)
 Compute the weights wi. associated with data sample xi and its

neighbors using Eq. (5), and construct the weight matrix W.

(4)
 Solve the generalized eigenvalue problem as shown in

Eq. (10), and construct the mapping V whose column vectors
are taken from the eigenvectors associated with the d smal-
lest eigenvalues.
(5)
 Compute the projected training images yi¼VTxi.

(6)
 Given a testing image xt, map it onto the subspace by yt¼VTxt.

(7)
 Input the projected testing image together with the projected

training images to a NN classifier, and classify the testing
image to corresponding class learned by the classifier.
6. Experiments

In this section, we evaluate the performance of 2DNPP algo-
rithm on three popular datasets, i.e. ORL [25], UMIST [26], and AR
[27] face datasets. First, we compare the recognition results of
2DNPP with those of other techniques including 2DLPP [19],
2DONPP, ONPP [4], NPP [4], 2DOLPP, OLPP [4], and LPP [3] (see
Section 6.1). For completeness, we also include the comparative
results of discriminative information based methods (i.e. 2DLDA
[18] and LDA [2]) and global geometry preserving based methods
(i.e. 2DPCA [17] and PCA [1]). Second, we test the performance of
2DNPP with respect to training time and demonstrate the
comparative results with NPP [4] (see Section 6.2). Third, we
investigate the effects of dimension variation of the reduced space
for 2D methods (see Section 6.3). Here, due to the Undersampled Size

Problem, ONPP [4], NPP [4], OLPP [4], LPP [3], and LDA [2] employs
an initial PCA [5] projection to reduce the dimensionality of the data
vectors to (N�c) [4]. For simplicity, all the graph-based methods



Fig. 1. Image sample from ORL dataset: 10 different faces for each subject with variations in facial expressions, facial details, and poses.

Table 2
Comparative results of different methods on ORL face dataset.

Method d Error rate (%)

2DNPP 9 5.95

2DONPP 20 85.58

2DLPP 9 6.07

2DOLPP 5 87.02

NPP 115 16.92

ONPP 150 9.30

LPP 25 17.92

OLPP 125 4.55

2DLDA 9 4.15

2DPCA 12 4.45

LDA 39 7.75

PCA 150 5.75

1 http://www.cs.toronto.edu/�roweis/data.html.
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including 2DNPP, 2DLPP [19], 2DONPP, ONPP [4], NPP [4], 2DOLPP,
OLPP [4], and LPP [3] are based on a supervised setting. 2DLPP [19],
2DOLPP, OLPP [4], and LPP [3] use Gaussian weights. As suggested
by [4], we determine the value of the width t of the Gaussian
envelop as follows: First, sample 1,000 points randomly and then
calculate the pairwise distances among them. The width t is set to
half the median of those pairwise distances [4]. In addition, it is
worth noting that the rank of the between-class scatter matrix in
LDA [2] is at most (c�1). Thus, the dimension of reduced space
using LDA [2] is at most (c�1).

6.1. Performance of recognition rate

6.1.1. ORL

The ORL dataset [25] contains 40 individuals. Each of them
includes 10 different images, which show variations in facial
expressions (smiling or not smiling), facial details (glasses or no
glasses), and poses. All images are grayscale, and the original size
of each image is 112�92. We resized the images to 64�64 for
computational efficiency. Fig. 1 shows one sample subject of the
ORL dataset. The dataset was firstly split into a training set and a
testing set. 200 training images were randomly selected from the
40 subjects, i.e. 5�40. The remaining 200 images were used for
evaluating the performance of recognition algorithms. 2D meth-
ods perform with the size of the reduced space d�64, where d is
the number of selected eigenvectors and varies from 1 to 20 at the
increment of 1. We test 1D methods with the dimension d1D of
the reduced 1D vectors from 5 to 150 at the increment of 5. For
each value of d and d1D, we calculate the average error rate across
20 different random realizations of the training/testing set. For
both 2D methods and 1D methods, we then select the number of
eigenvectors, d, which delivers the best performance with respect
to the average error rate. Many researchers have used this setting
in their experiments [4,17,19]. We also include the study of the
effect of dimension selection on recognition rate (see Section 6.3).
The comparative results are shown in Table 2.

From Table 2, we can observe that 2DNPP outperforms NPP and
ONPP significantly. It is interesting to notice that OLPP delivers better
results compared with 2DNPP and 2DLPP. But OLPP requires much
more training time than 2DNPP and 2DLPP (see Section 6.2). It is
surprising to find that 2DLDA, 2DPCA, LDA, and PCA all exhibit very
competitive results. This suggests that preserving either the global
geometry of samples or the discriminative information among
samples is effective to raise the recognition performance. Preserva-
tion of the local geometry may cause the degradation of recognition
rate for ORL dataset. In addition, we note that 2DONPP and 2DOLPP
show the worst performance. It indicates that without considering
the constraint to the objective function involved in NPP and LPP
degrades the overall performance significantly. In general, 2D meth-
ods expect for 2DONPP and 2DOLPP bring larger gain of recognition
rate than 1D methods. It implies that 2D methods are capable of
characterizing more accurate covariance of data samples. Besides, 2D
methods bring large time efficiency gain as well (see Section 6.2).

6.1.2. UMIST

The UMIST dataset [26] contains 20 individuals. The number of
images in each subject varies from 19 to 48 under different poses.
The entire dataset consists of 575 face images. We used a cropped
version of this dataset, which is online available.1 All images are
grayscale, and the original size of each image is 112�92. Likewise,
we resized the images to 64�64. Fig. 2 shows an example of one
subject of the UMIST dataset under 20 poses. We first split the
whole dataset into a training set and a testing set. 10 images were
randomly selected from each subject to construct the training set.
Thus the total number of training images is 200. The remaining 375
images were used for testing. 2D methods perform with the size of
the reduced space d�64, where d is the number of selected
eigenvectors and varies from 1 to 20 at the increment of 1. 1D
methods are tested with the dimension d1D of the reduced 1D
vectors from 5 to 150 at the increment of 5. For each value of d and
d1D, we calculate the average error rate across 20 different random
realizations. For both 2D methods and 1D methods, we then select
the dimension of the reduced space, which delivers the best
performance with respect to the average error rate. The comparative
results are summarized in Table 3.

http://www.cs.toronto.edu/&sim;roweis/data.html
http://www.cs.toronto.edu/&sim;roweis/data.html


Fig. 2. Image sample from UMIST dataset under different poses.

Table 3
Comparative results of different methods on UMIST face dataset.

Method d Error rate (%)

2DNPP 9 5.03

2DONPP 5 69.51

2DLPP 3 6.01

2DOLPP 5 73.89

NPP 135 14.83

ONPP 150 9.23

LPP 20 13.27

OLPP 45 5.43

2DLDA 3 3.80

2DPCA 13 6.97

LDA 19 7.08

PCA 125 6.68
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It is clear to see that 2DNPP delivers lower error rate than
other graph-based methods such as 2DLPP, NPP, ONPP, LPP, and
OLPP. In particular, 2DNPP achieves improved recognition rate by
at least 4% compared with NPP and ONPP. In this testing, 2DLDA
performs slightly better than 2DNPP. We observe that 2DLPP and
2DLDA characterize smaller dimension of the reduced space, i.e.
3�64, to deliver the best performance. It is also interesting to see
that 1D PCA performs even better than 2DPCA in an insignificant
rate in this case. Again, 2DONPP and 2DOLPP show big error rates.

6.1.3. AR

The AR dataset [27] contains over 4000 color images of 126
individuals, which include 70 men and 56 women. The images of
each subject were taken in two sessions. In each session, each
individual consists of 13 images, which show variations of frontal
views of faces in facial expressions, lighting conditions, and
occlusions. In this research, we took 100 individuals (50 men
and 50 women) to experiment and used the first 13 images of
each person to test the performance of all the algorithms. Thus,
the total number of images used in this experiment is 1300, i.e.
13�100. We conducted tests on a cropped and grayscale version
of these images and resized them to 64�64. Fig. 3 illustrates the
color samples of one subject, where Fig. 3(a)–(d) shows the
variations in facial expressions, Fig. 3(e), (f), (g), (i), (j), (l), and
(m) shows the variations under different lighting conditions with/
without occlusions, and Fig. 3(h)–(m) shows the variations in
occlusions with/without lighting conditions. To fully evaluate the
performance of 2DNPP together with other techniques, in the
following, we make three tests based on variations in facial
expressions, lighting conditions, and occlusions.

6.1.3.1. Facial expressions. In this test, we used images shown in
Fig. 3(a)–(d) from each subject to evaluate the performance of all the
algorithms handling different facial expressions. We randomly
selected two images from Fig. 3(a)–(d) for training. Another two
images are used for testing. Thus, the total number of training
samples is 200, i.e. 2�100. The comparative results are shown in
Table 4, where the average error rate of each method is based on 20
different random realizations. We observe that 2DNPP achieves
better results than other graph-based methods, i.e. 2DLPP, ONPP,
NPP, LPP, and OLPP. In particular, 2DNPP delivers over 10% of
recognition rate compared with NPP and LPP. 2DNPP is more
effective than 2DPCA, LDA, and PCA although 2DLDA performs
slightly better than 2DNPP.

6.1.3.2. Lighting conditions. This experiment is to test 2DNPP
together with other methods under varying lighting conditions.
For training, we selected images shown in Fig. 3(a), (h), and
(k) from each subject. For testing, we considered images shown in
Fig. 3(e), (f), (g), (i), (j), (l), and (m). Thus, the total number of
training samples is 300, i.e. 3�100, whilst the testing set includes
700 images, i.e. 7�100. We summarized the results in Table 5.
It is clear to see that 2DNPP performs much better than other
techniques. 2DNPP achieves over 5% of performance improvement
compared with 2DLPP and ONPP and delivers over 10% of
improvement of recognition rate compared with NPP, LPP, and
OLPP. 2DPCA and PCA perform the worst due to considering only
global geometry of data samples. It is interesting to observe that 1D
LDA delivers much better results than 2DLDA, which performs the
best in previous experiments.
6.1.3.3. Occlusions. Coping with occlusions is the most difficult task
for face recognition, in particular with the use of dimensionality
reduction methods. Here, we also include the testing results under
different occlusions. The training images were taken from the
samples illustrated in Fig. 3(a)–(f) from each person. The total
number of training samples is 600. On the other hand, the testing
images were the samples shown in Fig. 3(h)–(m) from each subject.
Thus, 600 images construct the testing set. Table 6 shows the
comparative results of all the algorithms. Again, 2DNPP delivers
the best recognition rate among all the algorithms. 2DLDA performs
slightly worse than 2DNPP. 2DLPP, OLPP, and LDA also achieve
promising results. But LPP almost fails to recognize and delivers the
worst performance. It is worth noting that 2DNPP improves the
recognition rate by around 33% compared with NPP and ONPP. From
the preceding experiments on the AR dataset, we observe that
2DONPP and 2DOLPP achieve only around 30% recognition rate.

6.2. Performance of training time

2D methods are based on direct matrix calculation and do not
require initial PCA preprocess, whilst 1D methods such as NPP,
ONPP, LPP, OLPP, and LDA need transform image matrices to flat
vectors and must employ PCA preprocessing due to the Under-

sampled Size Problem. On the other hand, usually 2D methods
require finding only a smaller number of eigenvectors. In this
sense, 2D methods will save a large amount of time for training.
In this sub-section, we experimentally evaluate the time



Fig. 3. Color image sample from AR dataset under variations in facial expressions, lighting conditions, and occlusions. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Table 4
Comparative results of different methods on AR dataset under

varying facial expressions.

Method d Error rate (%)

2DNPP 5 3.68

2DONPP 14 72.08

2DLPP 5 6.77

2DOLPP 14 72.08

NPP 30 15.02

ONPP 70 3.73

LPP 30 19.93

OLPP 50 9.00

2DLDA 6 1.20

2DPCA 10 8.22

LDA 35 11.48

PCA 95 15.50

Table 5
Comparative results of different methods on AR dataset under

varying lighting conditions.

Method d Error rate (%)

2DNPP 11 4.86

2DONPP 7 60.86

2DLPP 7 11.57

2DOLPP 7 61.57

NPP 125 16.57

ONPP 130 10.86

LPP 80 21.14

OLPP 60 32.43

2DLDA 20 27.43

2DPCA 20 49.43

LDA 90 8.57

PCA 175 77.71

Table 6
Comparative results of different methods on AR dataset under

varying occlusions.

Method d Error rate (%)

2DNPP 16 42.17

2DONPP 8 75.33

2DLPP 12 47.17

2DOLPP 8 75.67

NPP 65 75.33

ONPP 75 75.67

LPP 200 89.50

OLPP 180 52.67

2DLDA 17 43.00

2DPCA 20 70.17

LDA 99 51.17

PCA 200 72.00

Table 7
Training time of 2DNPP and NPP for all tests (Sec).

ORL UMIST AR (facial

expressions)

AR (lighting

conditions)

AR

(occlusions)

2DNPP 0.96 0.18 0.08 0.25 0.52

NPP 407.04 251.57 172.36 253.31 212.97
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performance of 2DNPP. Note that the training time of other 2D
algorithms including 2DLPP, 2DLDA, and 2DPCA is similar to that
of 2DNPP, and NPP requires the similar training time compared
with other 1D methods such as ONPP, LPP, OLPP, LDA, and PCA.
Therefore, we only compare 2DNPP with NPP in terms of training
time in this experiment. The results are summarized in Table 7.
We observed that the training time of 2DNPP is less than 1 s
across all the experiments. The training of 2DNPP is over 400
times faster than that of NPP.

6.3. Study of dimension selection

In this experiment, we study the effect of varying the number
of selected eigenvectors for 2D methods, which include 2DNPP,
2DLPP, 2DLDA, and 2DPCA. For ORL dataset as shown in Fig. 4,
2DLDA and 2DPCA work surprisingly well across all the values of
d, which is the number of selected eigenvectors. 2DNPP performs
slightly better than 2DLPP along with most of the values of d in
this dataset. In UMIST, again 2DLDA performs better than other
2D methods observed from Fig. 5. 2DNPP outperforms 2DLPP
across all the values of d. It is interesting to observe that 2DPCA
achieves higher recognition rates when the value of d is larger
than 7. The error rate curve obtained by 2DPCA becomes very
smooth when the value of d is larger than 8. Figs. 6–8 illustrate
the results in AR dataset under varying facial expressions, lighting
conditions, and occlusions. Compared with Fig. 5, similar results
are observed in Fig. 6 with respect to AR dataset under varying
facial expressions. In Fig. 7 illustrating the results under different
lighting conditions, 2DNPP outperforms other 2D methods across
all the values of d. In contrast to Fig. 7, 2DNPP only achieves the
best results along with the value of d varying from 16 to 19 as
shown in Fig. 8.

6.4. Discussion

In general, from the preceding experiments, the 2DNPP algo-
rithm designed in this paper delivers consistently promising
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performance across all the experiments, especially for the faces
under varying lighting conditions and occlusions. Specifically, we
summarize the comparisons as follows:
(1)
 2DNPP vs. 2DLPP: 2DNPP and 2DLPP employ different neigh-
borhood weighting schemes, and they are equivalent under
some special setting (see Section 4.1). But 2DNPP does not
require any parameter selection during the neighborhood
weighting, whilst 2DLPP is sensitive to the selection of the
width of a Gaussian envelope [4]. From our experiments, we
observe that 2DNPP consistently outperform 2DLPP. But we
believe that 2DLPP under an appropriate parameter setting is
comparable to 2DNPP. The parameter selection needs to be
further investigated in the future work.
(2)
 2DNPP vs. 2DLDA: From our observations, the 2DLDA approach
is the most competing one to 2DNPP. 2DLDA works especially
well for the face datasets with the variations in facial expres-
sions and poses, for instance, the ORL and UMIST datasets.
2DLDA delivers only within 2% higher recognition rate than
2DNPP in ORL, UMIST, and AR (under varying facial expressions)
datasets, but it works much worse than 2DNPP in AR dataset
under varying lighting conditions. It indicates that for the local
variations in faces such as occlusions and lighting conditions
may degrade the performance of 2DLDA, because it only
incorporates the discriminative information and the global
geometry of data samples and lacks the local geometry descrip-
tion. In addition, 2DLDA is only implemented in a supervised
setting, whilst the implementation of 2DNPP can be either
unsupervised or supervised.
(3)
 2DNPP vs. 2DPCA: 2DPCA is the origin of using 2D image inputs,
and it has shown promising results compared to PCA in terms of
recognition rate and time performance. But 2DPCA overlooks
the locality description of samples. Experimental results suggest
that 2DPCA performs slightly better than 2DNPP on the ORL
dataset, which mainly shows variations in facial expressions,
facial details, and poses. But 2DNPP significantly outperforms
2DPCA in particular on the AR dataset, which includes frontal
views of faces in facial expressions, lighting conditions, and
occlusions.
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(4)
 2DNPP vs. ONPP, NPP: 2DNPP is a straightforward extension
of NPP for 2D feature inputs. ONPP is a variation of NPP
without considering a condition of orthogonality on the
projected data. From experimental results, we observe that
2DNPP consistently delivers better performance on recogni-
tion rate than ONPP and NPP. Meanwhile, the training of
2DNPP is over 400 times faster than ONPP and NPP.
(5)
 2DNPP vs. OLPP, LPP: Both OLPP and LPP suffer the parameter
selection issue with respect to the width of a Gaussian
envelope as 2DLPP does. Despite OLPP delivers slightly better
results than 2DNPP on the ORL dataset, 2DNPP outperforms
OLPP and LPP in a significant rate in particular on the AR set.
In addition, 2DNPP requires less training time. It is interesting
to note that OLPP demonstrates promising results, in parti-
cular for the faces under the variations in facial expressions
and poses, but it does not work well for the faces under
varying lighting conditions and occlusions.
(6)
 2DNPP vs. LDA, PCA: Both PCA and LDA work on 1D feature
inputs. PCA aims at maximizing the covariance of training
samples in an unsupervised manner, whilst LDA maximizes
the class separability of a training set in a supervised manner.
On the ORL dataset, the results of 2DNPP, LDA, and PCA are
comparable. But 2DNPP outperforms LDA and PCA signifi-
cantly on the AR dataset.
(7)
 2DNPP vs. 2DONPP, 2DLPP vs. 2DOLPP: As we mentioned
before, the difference between 2DNPP and 2DONPP, or 2DLPP
and 2DOLPP is whether we impose a constraint to the objective
function or not. From experimental results, it is surprisingly
observed that 2DONPP and 2DOLPP almost have no capability of
recognizing faces. We should note that ONPP and OLPP achieve
promising results in comparison to NPP and LPP, respectively.
This finding indicates a big necessity of the constraint to the
objective function F(Y) in the form of YYT

¼ Id when it comes to
dealing with two-dimensional (2D) feature inputs.
7. Conclusion

In this research, we design a 2DNPP algorithm, which is a two-
dimensional extension of NPP algorithm. 2DNPP enables us to
directly use a feature input of 2D image matrices rather than 1D
vectors. We use the neighborhood weighting procedure, which is
identical with that involved in NPP, to form the nearest neighbor
affinity graph. We then present a detailed theoretical analysis of
2DNPP to build a relationship with 2DLPP [19], 2DPCA [17], and
2DLDA [18]. In line with the essence of the extension from 1D to
2D feature inputs, we extend the typical ONPP [4] to 2DONPP and
make an extension of OLPP [4] to 2DOLPP as well. Extensive
experimental verifications to evaluate the performance of 2DNPP
on three well-known face image datasets show that 2DNPP
consistently delivers promising performance, especially for the
face datasets under the variations in lighting conditions and
occlusions. Specifically, 2DNPP outperforms the standard NPP in
a significant rate across all experiments with respect to recogni-
tion rate and training time. Likewise, 2DNPP achieves comparable
performance compared with other competing methods. In this
research, we find that the imposition of a constraint of the
projection axes to the objective function in both NPP and LPP
plays a crucial role for their 2D extensions in recognition. We
need to investigate the theoretical support of this observation in
the future work. According to [4], imposing the condition YYT

¼ Id

leads to a criterion that is similar to that of PCA: the projected
points yi will tend to be different from one another because of the
orthogonality of data projections. In other words, 2DNPP, 2DLPP,
NPP, and LPP try to use the differentiation among the face images
for recognition. In the future work, it will be interesting to
investigate the performance of these algorithms in a data set
with face images of very small difference. Motivated by [28,29], in
the future work we may develop an efficient scheme to incorporate
discriminative information to neighborhood preserving related
methods such as 2DNPP, 2DLPP, ONPP, NPP, OLPP, and LPP.
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